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Biographical Sketch 

Summary 

Microbes play key geoactive roles in the environment particularly regarding element 

biotransformations and biogeochemical cycling, metal, mineral and radionuclide 

transformations, decomposition, bioweathering, soil and sediment formation. All types 

of microbes, including prokaryotes and eukaryotes and their symbiotic associations with 

each other and ―higher organisms‖, can contribute to geological phenomena, and metals 

and mineral transformations are central to many. Microbes possess several properties 

that can effect changes in metal speciation, toxicity and mobility, as well as mineral 

formation or mineral dissolution. Such mechanisms are important components of 

natural biogeochemical cycles for metals as well as associated elements in biomass, soil, 

rocks and minerals, and metalloids, actinides and metal radionuclides. Apart from this, 

metal and mineral transformations can have beneficial or detrimental consequences in a 

human context. Bioremediation refers to the application of biological systems to the 

clean-up of organic and inorganic pollution with bacteria and fungi being the most 

important organisms in this context for reclamation, immobilization or detoxification of 

metallic and radionuclide pollutants. In addition, some biominerals or metallic elements 

deposited by microbes have catalytic and other properties in nanoparticle, crystalline or 

colloidal forms, and these are relevant to the development of novel biomaterials for 

structural, technological, environmental and antimicrobial purposes. In contrast, 

microbial metal and mineral transformations may result in spoilage and destruction of 

natural and synthetic materials, rock and mineral-based building materials, e.g. concrete, 

acid mine drainage and associated metal pollution, biocorrosion of metals, alloys, and 

related substances, and adverse effects on radionuclide speciation, mobility and 

containment, all with significant social and economic consequences.  

 

1. Microbes as Geoactive Agents 

 

Microbes interact with metals and minerals in natural and synthetic environments, 

altering their physical and chemical state, with metals and minerals affecting microbial 

growth, activity and survival. Furthermore, many minerals are biogenic in origin, and 

their formation is of global geological and industrial significance, as well as providing 

important structural components for important microbial groups such as diatoms, 

foraminiferans and radiolarians (Ehrlich, 1996; Gadd & Raven, 2010).Geomicrobiology 

can simply be defined as the roles of microbes in geological processes (Banfield & 

Nealson, 1997; Banfield et al., 2005; Konhauser, 2007; Ehrlich & Newman, 2009). The 

term biomineralization refers to the collective processes by which organisms form 

minerals (Bazylinski, 2001; Dove et al., 2003), a phenomenon widespread in biology 

and which can be mediated by archaea, bacteria, protists, fungi, plants, and animals. 

Most biominerals are calcium carbonates, silicates, and iron oxides or sulfides 

(Baeuerlein 2000; Bazylinski 2001). Metal-mineral-microbe interactions are of key 
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importance within the framework of geomicrobiology and also fundamental to 

microbial biomineralization processes (Gadd, 2010; Benzerara et al., 2011). 

 

While the activities of microbes in transforming organic and inorganic substrates has 

long been appreciated by microbiologists, there is growing awareness of the 

geochemical significance of microbes among researchers in geology, mineralogy, geo-

chemistry, geomorphology, and related disciplines (Banfield & Nealson, 1997; Warren 

& Haack, 2001; Macalady & Banfield, 2003; Bottjer, 2005; Gleeson et al., 2007; 

Konhauser, 2007; Gadd, 2008a, 2010; Uroz et al., 2009; Viles, 2011; Benzerara et al., 

2011). Key topics within the geomicrobiology framework include biogeochemical 

cycling of the elements, mineral formation, mineral deterioration (which can include 

such subjects as bioweathering and processes leading to soil and sediment formation), 

and chemical transformations of metals, metalloids and radionuclides (Ehrlich, 1996). 

All typesof microbes, including prokaryotes and eukaryotes and their symbiotic 

associations with each other and ―higher organisms‖, can contribute actively to 

geological phenomena(Macalady & Banfield, 2003; Bottjer, 2005; Chorover et al., 

2007; Konhauser, 2007; Gleeson et al., 2007; Gadd, 2008a, 2010), and most of these 

processes involve metal and mineral transformations. Examples of geomicrobially-

important groups of microbes directly involved in geochemical transformations include 

iron-oxidizing and -reducing bacteria, manganese-oxidizing and -reducing bacteria, 

sulfate-reducing bacteria, sulfur-oxidizing and -reducing bacteria, and many other pro- 

and eukaryotes that can form or degrade silicates, carbonates, phosphates and other 

minerals (see Gadd, 2007, 2010; Kim & Gadd, 2008; Gadd & Raven, 2010). Root-

inhabiting rhizosphere microbes, including mycorrhizal fungi, have a major influence 

on plant nutrition by means of effects on phosphate availability but also metal 

circulation (Amundson et al., 2007). During the early phases of soil formation the 

contribution of microbial activities (including the activities of lichens) to rock 

weathering, mineral dissolution and element cycling is also intimately related to metal 

movements and transformations (Purvis & Pawlik-Skowronska, 2008; Gilmour &Riedel, 

2009; Uroz et al., 2009). It should also be emphasized that the general metabolic 

activities of all microbes affects metal distribution and bioavailability, not least because 

of the metabolic essentiality of many metals and the existence of specific biochemical 

mechanisms for their cellular accumulation, but also through the decomposition or 

biodeterioration of organic and inorganic substrates (Warren & Haack, 2001; Huang et 

al., 2004; Gadd, 2007). Apart from being important in natural biosphere processes, 

metal- and mineral transformations can have beneficial or detrimental consequences in a 

human context. Bioremediation is the application of biological systems to the clean-up 

of organic and inorganic pollution with bacteria and fungi being the most important 

organisms in this context for reclamation, immobilization or detoxification of metallic 

pollutants. Some biominerals or metallic elements deposited by microbes may have 

catalytic properties in nanoparticle, crystalline or colloidal forms,and these are relevant 

to the development of novel biomaterials for structural, technological, environmental 

and antimicrobial purposes (Lloyd et al., 2008; Theng & Yuan, 2008; Petkov et al., 

2009; Hennebel et al. 2009). In contrast, metal and mineral transformations may result 

in degradation and spoilage of natural and synthetic materials, rock and mineral-based 

building materials, acid mine drainage and associated metal pollution, biocorrosion of 

metals, alloys, and related substances, and adverse effects on radionuclide speciation, 

mobility and containment. In view of the ubiquity and importance of microbes in 
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biosphere processes, it can easily be argued that geomicrobiology is one of the most 

important concepts within microbiology, and requiring an interdisciplinary approach 

involving physical, chemical and biological disciplines. This contribution seeks to 

outline some of the main ways that microbes (chiefly bacteria and fungi) interact with 

metals and minerals, their importance in geological and environmental processes, and 

their applied significance. 

 

2. Metals and Minerals 

 

Metals comprise about 75% of the known elements, are ubiquitous in the biosphere, and 

vital to our industry, infrastructure and daily life. Since the industrial revolution, metals 

have increasingly been redistributed in the environment with accumulation in terrestrial 

and aquatic habitats associated with adverse effects on the biota and human health. 

Thirteen trace metals and metalloids (Ag, As, Be, Cd, Cr, Cu, Hg,, Ni, Pb, Sb, Se, Tl, 

Zn) are considered priority pollutants (Sparks, 2005), and originate from natural sources 

such as rocks and metalliferous minerals, and anthropogenic inputs from, e.g. 

agriculture, metallurgy, energy production, microelectronics, mining, sewage sludge 

and waste disposal (Landa, 2005; Gilmour & Riedel, 2009). Atmospheric deposition is a 

major mechanism for metal input to plants and soils. Volatile metal(loid)s such as As, 

Hg, Se, and Sbcan be distributed as gases or enriched in particles, while Cu, Pb, andZn 

are transported as particulates (Adriano 2001;Adriano et al. 2005). In terrestrial 

ecosystems, soils are themajor sink for metal contaminants, while sediments are the 

major sink for metals in aquatic systems. Metal contaminants can impact aquatic 

systems through runoff, leaching and transport via mobile colloids(Adriano 2001; 

Adriano et al. 2005).Metals are significant natural components of all soils where their 

presence in the mineral fraction comprises a pool of potentially-mobile metal species, 

many essential nutrients for plants and microbes, and important solid components that 

can have a fundamental effect on soil biogeochemical processes, e.g. clays, minerals, 

iron and manganese oxides (Huang et al., 2004). Metals are also present in organic 

fractions, frequently in bound forms, with some metal recycling occurring as a result of 

organic matter degradation. The aqueous phase provides a mobile medium for metal 

transfer and circulation through the soil and to organisms, and to the aquatic 

environment (Warren & Haack, 2001). The aquatic environment also contains a vast 

pool of metals in various chemical forms, with many accumulating in sediments 

(Warren & Haack, 2001; Gilmour & Riedel, 2009).Other contaminants related to metals 

are metalloids, organometals, and organometalloids, while many radionuclides that 

enter the environment are metals. 

 

Minerals are naturally-occurring inorganic solids of definite chemical composition with 

an ordered internal structure; rocks can be considered to be any solid mass of mineral or 

mineral-like material. Silicates are the most common minerals with non-silicates 

constituting <10% of the Earth’s crust, the most common being carbonates, oxides, 

sulfides and phosphates. Rocks and minerals represent a vast reservoir of elements, 

many essential for life, and such elements must be released in forms that may be 

assimilated by the biota. These include essential metals as well as nutrient elements like 

S and P (Gadd, 2007; Gadd et al., 2005, 2007). Physical, chemical and biological 

mechanisms contribute to weathering and decay of rocks and minerals, and for the latter, 

metal-microbe interactions will be involved in the majority of cases. The activities of 



UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

EXTREMOPHILES - Geomicrobiology of Metal and Mineral Transformations in the Environment - Geoffrey Michael Gadd 

Encyclopedia of Life Support Systems (EOLSS) 

microbes (and other organisms) in rock and mineral deterioration can be termed 

bioweathering. 

 

The vast majority of all minerals contain metals, and there can be a multitude of mineral 

types for each metal element, of varying distribution in the environment and physico-

chemical properties. For example, manganese is a major or minor component in more 

than 100 naturally-occurring minerals of which major accumulations are as oxides, 

carbonates, and silicates (Ehrlich& Newman, 2009).In addition, metals may be common 

components of many minerals as impurities from natural and industrial sources: 

potentially-toxic and other metals may be found in, e.g. silicates, sulfides, oxides, 

carbonates and phosphates. Regardless of their origin, whether geologic or biogenic, 

microbes can interact with minerals and affect their structure by mechanical and 

biochemical mechanisms, and affect the speciation and mobility of component metals 

(Ehrlich, 1996; Edwards et al., 2005; Landa, 2005; Gleeson et al., 2007; Lian et al., 

2008; Gadd, 2008b; Brown et al., 2008; Uroz et al., 2009). 

 

In contrast to mineral deterioration, dissolution or fragmentation, all groups of microbes 

can mediate mineral formation by direct and indirect mechanisms. In such cases, the 

minerals can be termed biominerals, to emphasize the involvement of living organisms 

although the chemical structure of the minerals so produced may be identical to 

minerals produced by geochemical mechanisms. Biomineralization may particularly 

refer to processes where biomineral formation is highly-directed and fundamental to the 

formation of a cellular structure. Examples include magnetosomes composed of 

magnetite in magnetotactic bacteria (Bazylinski & Moskowitz, 1997; Bazylinski, 2001; 

Posfai & Dunin-Borkowski, 2009), silicaceous cell walls of diatoms (algae) and 

radiolarians (protozoa), and carbonate tests of various amoebae and algae (e.g. 

coccolithophores) (Banfield & Nealson, 1997; Dove et al., 2003; Banfield et al., 2005; 

Ehrlich & Newman, 2009; Gadd & Raven, 2010). Other biominerals may arise from 

redox transformations of metals, sorption phenomena, and metabolic activities where 

organic and inorganic metabolites e.g. oxalate, respiratory CO2, and sulfide, may 

precipitate metals in the cellular microenvironment, or effect chemical changes in the 

substrate which also lead to secondary mineral formation (Ehrlich, 1996; Hamilton, 

2003; Glasauer et al., 2004; Konhauser, 2007; Ehrlich & Newman, 2009).  

 

3. Microbes, Metals and Minerals 

 

Metals are directly and/or indirectly involved in all aspects of microbial growth, 

metabolism and differentiation (Gadd, 1992a). Metals and their compounds interact 

with microbes in various ways depending on the metal species, organism and 

environment, while structural components and metabolic activity influence metal 

speciation and therefore solubility, mobility, bioavailability, and toxicity (Gadd & 

Griffiths, 1978; Gadd, 1992a, 1993a, 2004, 2005, 2007). Many metals are essential, e.g. 

Na, K, Cu, Zn, Co, Ca, Mg, Mn, and Fe, but all can exert toxicity when present above 

certain threshold concentrations. Other metals, e.g. Cs, Al, Cd, Hg and Pb, have no 

known essential metabolic functions but all can be accumulated. Microbes are 

intimately associated with the biogeochemical cycling of metals, and associated 

elements, where their activities can result in mobilization and immobilization depending 

on the mechanism involved and the microenvironment where the organism(s) are 
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located (Gadd, 2004, 2007; Violante et al., 2008; Ehrlich& Newman, 2009).Elevated 

concentrations of toxic metals and radionuclides can occur in the fruit bodies 

(basidiomata) of macromycetes in polluted environments. This is of significance in 

relation to the use of macrofungi as bioindicators of metal pollution, and because of 

toxicity to humans from the consumption of wild fungi. Ingeneral, levels of lead, 

cadmium, zinc and mercury found in macrofungi from urban or industrial areas are 

higher than from corresponding rural areas, although there are wide differencesin uptake 

abilities between different species and metals (Tyler 1980; Bressa et al. 1988; Lepsova 

& Mejstrik1989; Wondratschek &Roder 1993; Nasr & Arp, 2011). Macrofungi are also 

effective accumulators of radiocaesium (Malinowska et al. 2006), silver and gold 

(Borovicka et al., 2010a,b). 

 

Metals exhibit a range of toxicities towards microbes, and while toxic effects can arise 

from natural geochemical events, toxic effects on microbial communities are more 

commonly associated with anthropogenic contamination or redistribution of toxic 

metals in aquatic and terrestrial ecosystems. Such contamination can arise from aerial 

and aquatic sources, as well as agricultural and industrial activities, and domestic and 

industrial wastes. In some cases, microbial activity can result in remobilization of 

metals from waste materials and transfer into aquatic systems (Gadd, 2009a; Violante et 

al., 2008). It is commonly accepted that toxic metals, their chemical derivatives, 

metalloids, and organometals, can have significant effects on microbial populations and, 

under toxic conditions, almost every index of microbial activity can be affected (Giller 

et al., 2009). However, metal toxicity is greatly affected by the physico-chemical nature 

of the environment and the chemical behaviour of the metal species in question (Gadd 

& Griffiths 1978). Despite apparent toxicity, many microbes grow and even flourish in 

apparently metal-polluted locations and a variety of mechanisms, both active and 

incidental, contribute to resistance (Gadd & Griffiths, 1978; Mowll & Gadd, 1984; 

Gadd et al., 1984; Avery, 2001; Holden & Adams, 2003; Fomina et al.,2005c). 

Microbial resistance to toxic metals is widespread with frequencies ranging from a few 

percent in pristine environments to nearly 100% in heavily polluted environments 

(Silver & Phung, 2009). 

 

Most survival mechanisms depend on some change in metal speciation leading to 

decreased or increased mobility. These include redox transformations, the production of 

metal-binding peptides and proteins (e.g. metallothioneins, phytochelatins), organic and 

inorganic precipitation, active transport, efflux and intracellular compartmentalization, 

while cell walls and other structural components have significant metal binding abilities 

(Mowll & Gadd, 1984; White & Gadd, 1998; Gadd, 2004a, 2005, 2006). Other 

microbial properties lead to metal solubilization from organic and inorganic sources 

(Gadd, 2007). Such metal transformations are central to metal biogeochemistry, and 

emphasize the link between microbial responses and geochemical cycles for metals 

(Ehrlich, 1997; Gilmour & Riedel, 2009).Metal-mineral-microbe interactions are 

especially important in the so-called terrestrial ―critical zone‖, defined as ―the 

heterogeneous, near-surface environment in which complex interactions involving rock, 

soil, water, air, and living organisms regulate the natural habitat and determine the 

availability of life sustaining resources‖ (Sparks, 2005; Chorover et al., 2007; 

Amundson et al., 2007; Brantley et al., 2007).  

 



UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

EXTREMOPHILES - Geomicrobiology of Metal and Mineral Transformations in the Environment - Geoffrey Michael Gadd 

Encyclopedia of Life Support Systems (EOLSS) 

Bacterial resistance mechanisms generally involve efflux or enzymatic detoxification 

which can also result in release from cells, e.g. Hg
2+

 reduction to Hg
0
 (Silver & Phung 

1996, 2009; Nies 1992a, 1995, 1999, 2003; Rosen, 2002; Osman & Cavet, 2008). 

Bacterial plasmids have resistance genes to many toxic metals and metalloids, e.g. Ag
+
, 

AsO2
-
, AsO4

3-
, Cd

2+
, Co

2+
, CrO4

2-
, Cu

2+
, Hg

2+
, Ni

2+
, Sb

3+
, TeO3

2-
, Tl

+
 and Zn

2+
. Related 

systems are also frequently located on bacterial chromosomes, e.g. Hg
2+

 resistance in 

Bacillus, Cd
2+

 efflux in Bacillus, arsenic efflux in E. coli (Silver & Phung 1996; Rosen, 

2002). The most detailed research exists for As, Hg, Cd, Cu, Co, Zn, Pb, Ag, Ni and Te 

for which genes have been sequenced and resistance mechanisms proposed (Osman & 

Cavet, 2008; Silver & Phung 2009). As with bacteria, intracellular metal concentrations 

in fungi may be regulated by transport, including efflux mechanisms and internal 

compartmentalization (Gadd 1993a; Macreadie et al. 1994; Blaudez et al. 2000; Eide, 

2000; Van Ho et al., 2002) as well as the direct and indirect mechanisms listed above. 

Microbes also may synthesize a variety of metal-binding peptides and proteins, e.g. 

metallothioneins and phytochelatins, which regulate metal ion homeostasis (Eide, 2000; 

Avery, 2001). In eukaryotes, intracellular compartmentalization may also be significant 

in tolerance (Gadd, 1993a; Eide, 2000; Avery, 2001). 

 

Many microbial processes can be influenced by minerals including energy generation, 

nutrient acquisition, cell adhesion and biofilm formation (Hochella, 2002; Brown et al., 

2008). Essential nutrients may be acquired from mineral surfaces and this concentrates 

these substances above surrounding environmental levels, e.g. C, N, P, Fe, essential 

metals, and various organic compounds (Vaughan et al., 2002). Environmental 

contaminants, including metals, may also be sorbed to mineral surfaces and these can be 

displaced by microbial activity (Kraemer et al., 1999; Huang et al., 2004; Chorover et 

al., 2007; Theng & Yuan, 2008). Potentially toxic metals released from minerals as a 

result of physico-chemical and biological processes may also affect microbial 

communities (Fomina et al, 2005c; Gadd, 2005). Such properties of mineral surfaces as 

microtopography, surface composition, surface charge and hydrophobicity play an 

important role in thigmotropism, microbial attachment and detachment, and are 

therefore critical for colonization and biofilm formation, and the ecology of microbial 

populations associated with mineral substrates (Vaughan et al., 2002; Gleeson et al., 

2005, 2006, 2010; Bowen et al., 2007; Brown et al., 2008).Interactions of soil minerals 

with organic substances and microbes also have an enormous impact on the formation 

and transformation of metal oxides. Al and Fe oxides, especially in their nanoparticulate 

forms, are among the most reactive component of acidic and neutral soils. Such metal 

oxides are ubiquitous and play a significant role in influencing soil behavior, e.g. 

mineral catalysis of humic substance formation, and influence on enzymatic stability 

and microbial activity, and, together with microbial activities in metal and mineral 

transformations have a great impact on soil processes (Huang et al., 2005). 

 

4. Metal Mobilization  

 

Metal mobilization from rocks, minerals, soil and other substrates can be achieved by 

protonolysis, complexation by excreted metabolites and Fe(III)-binding siderophores, 

chemical oxidation or reduction, indirect Fe(III) attack, and methylation which can 

result in volatilization. In addition, other excreted metabolites with metal-complexing 

properties, e.g. amino acids, phenolic compounds, and organic acids may also play a 
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role. Low molecular weight carboxylic acids can play an important role in chemical 

attack of minerals providing protons as well as a metal-chelating anion (Burgstaller and 

Schinner, 1993; Jacobs et al., 2002a,b; Huang et al., 2004; Lian et al., 2008). Oxalic 

acid can leach metals that form soluble oxalate complexes, including Al and Fe 

(Strasser et al., 1994). Such activity may be involved in the weathering of silicate 

minerals such as feldspars (Drever & Stillings, 1997). Solubilization mechanisms may 

have adverse consequences when metals are mobilized from toxic metal-containing 

minerals, e.g. chloropyromorphite (Pb5(PO4)3Cl), contaminated soil and other solid 

wastes (Sayer et al., 1999; Fomina et al., 2004a,b, 2005a,b). Degradation of persistent 

carbon sources, such as charcoal and black shale, can be accelerated by fungal activity, 

which in turn may accelerate release of toxic metals as organic metal complexes 

(Wengel et al., 2006). It has been shown that microbes and their extracellular products 

can influence the mobility of metals, e.g. Cu, from waste disposal sites, even under the 

relatively low nutrient fluxes that dominate subsurface systems (Boult et al., 2006). 

 

Microbes can also mobilize metals and attack mineral surfaces by redox processes 

(Ehrlich, 1996; Lloyd & Lovley, 2001; Holden & Watts, 2003; Schroder et al., 2003; 

Lloyd et al., 2003): Fe(III) and Mn(IV) solubility is increased by reduction to Fe(II) and 

Mn(II) respectively. Microbial reduction of Fe(III) and Mn(IV) may also be a means for 

releasing contaminant metals absorbed to Fe(III) and Mn(IV) oxides and this process 

may be enhanced by humic materials, or related compounds (Lovley and Coates 1997; 

Lloyd et al., 2003). Bacterial Fe(III) reduction resulted in release of, e.g. Mn and Co, 

from goethite (Bousserrhine et al. 1999), Pu from contaminated soils (Rusin et al. 1993) 

and Ra from uranium mine tailings (Landa and Gray 1995).Mercuric ion (Hg
2+

) can be 

enzymatically reduced to metallic mercury by bacteria and fungi which serves as a 

resistance and detoxification mechanism as Hg
0 

is volatile (Gadd, 1993b; Lloyd et al., 

2003; Barkay & Wagner-Dobler, 2005). Metallic mercury may also be oxidized to Hg
2+ 

as a result of interaction with metabolic by-products (Barkay & Wagner-Dobler, 2005; 

Ehrlich& Newman, 2009). Enzymatic reduction of plutonium(IV) to more soluble 

plutonium(III) under anaerobic conditions was demonstrated forGeobacter 

metallireducens GS-15 and Shewanella oneidensis MR-1 (Boukhalfa et al., 2007).Ferric 

iron, Fe(III), can be enzymatically reduced to ferrous iron with a suitable electron donor 

(Schroder et al., 2003). Many Fe(III) reducers are heterotrophs and such Fe(III) 

respiration may be a more important mechanism of carbon source decomposition in 

some anaerobic environments than sulfate reduction (Ehrlich & Newman, 2009). Some 

ferric iron reduction can be the result of metabolic products such as H2S or formate, or 

other secondary metabolites. Naturally-occurring microbially-produced metal chelators 

that may solubilize Fe(III) include oxalate, citrate, humic acids, and tannins. 

 

Methylated derivatives of several elements naturally arise in the environment as a result 

of chemical and biological methylation, microbes playing significant roles in the latter 

process (Thayer, 1989; Gadd, 1993b). Methylation of Hg, Sn, and Pb, and the 

metalloids As, Se, and Te (see later), can be mediated by a range of microbes, including 

clostridia, methanogens, and sulfate-reducing bacteria under anaerobic conditions, and 

principally fungi under aerobic conditions, such as Penicillium and Alternaria spp., as 

well as a variety of bacteria, including pseudomonads. There is also evidence for 

methylation of Sb by diatoms. Methyl groups are enzymatically transferred to the metal, 

and a given species may transform a number of different metal(loid)s. Methylated metal 
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compounds formed by these processes differ in their solubility, volatility, and toxicity. 

Volatile methylated species are often lost from the soil. There are examples of methyl-

accumulating reactions for TI, Pd, Pt, Au and Cr but the involvement of 

microbial/abiotic components is unclear. Mercuric ion (Hg
2+

) may be methylated by 

bacteria and fungi to methylmercury [(CH3)Hg
+
] which is more toxic than the mercuric 

ion (Barkay & Wagner-Dobler, 2005). Some bacteria can methylate methylmercury, 

forming volatile dimethylmercury. Methylmercury as well as phenylmercury can be 

enzymatically reduced to volatile metallic mercury (Hg
0
) by some bacteria. 

Phenylmercury can also be microbially converted to diphenylmercury (Barkay & 

Wagner-Dobler, 2005). 

 

4.1. Siderophores 

 

Siderophores are the largest class of known compounds that can bind and transport, or 

shuttle, Fe. They are highly specific Fe(III) ligands (formation constants often greater 

than 10
30

). These low-molecular weight coordination molecules are excreted by a wide 

variety of fungi and bacteria to aid Fe assimilation. Although the mechanism could be 

used to acquire other metals, Fe is the only known essential element for which these 

specific organic shuttles operate. This is probably because Fe is needed in larger 

amounts by cells than other poorly soluble metals, and, given the low solubility-product 

constant of ferric hydroxide (less than 10
-38

), the concentration of free Fe
3+

 is too low to 

support microbial growth at pH values where most life exists. Organisms have most 

likely evolved mechanisms to ensure that Fe demand is met through the production of 

species-specific siderophores, or by attachment to a solid Fe mineral, e.g. Fe oxides, to 

shorten the pathway between the Fe substrate and cellular site of uptake (Kalinowski et 

al., 2000; Glasauer et al., 2004). Siderophores can complex other metals apart from iron, 

in particular actinides. Because of such metal-binding abilities, there are potential 

applications for siderophores in medicine, reprocessing of nuclear fuel, bioremediation 

of metal-contaminated sites, and of industrial waste treatment (Renshaw et al., 2002). 

Some siderophores can also promote reductive dissolution of certain Mn oxides 

(Duckworth & Sposito, 2007). 

 

5. Metal Immobilization  

 

Microbial biomass provides a metal sink, either by biosorption to cell walls, pigments 

and extracellular polymeric substances (EPS) including polysaccharides, intracellular 

accumulation, or precipitation of metal compounds in and/or around cells, hyphae or 

other structures (Gadd, 1986, 1993a, 2000a, 2001a,b, 2007; Baldrian, 2003; Fomina et 

al., 2007a,b; Aguilera et al., 2008).All microbial material can be effective metal 

biosorbents except for mobile alkali metal cations like Na
+
 and K

+
, and this can be an 

important passive process in living and dead organisms(Gadd, 1993a, 2009b; Sterflinger, 

2000; Wang & Chen, 2009).  

 

In natural systems, metal bioavailability is determined by interactions with 

environmental components, such as clays and other minerals, humic substances, soil 

colloidal materials, biogenic debris and exudates, and living organisms. Sorption is one 

of the most important reactions that influences bioavailability, and metal sorption to 

cells is likely to play an important role in all microbe-metal-mineral interactions 
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(Burford et al., 2003a), taking place over a massive range of timescales from 

milliseconds to years (Borda & Sparks, 2008; Theng & Yuan, 2008).Metal interactions 

with specific cell-surface groups may also enhance or inhibit metal transport, metal 

transformations and biomineralization processes (Barkay & Schaefer, 2001).  

  

The major biosphere compartments, such as soil and the oceans, contain a vast amount 

of metal-sorbing material with high surface area to volume ratios: bacteria have the 

highest surface area: volume ratios of any living organisms. Microbes are major 

components of the soil while biogenic particles dominate oceanic detrital phases 

(Stumm & Morgan, 1996). Many studies have shown that microbial cells, on a specific 

unit area basis, can exhibit higher sorption values for metals than even, e.g. clay 

minerals (Garnham et al., 1993; Morley & Gadd, 1995). It is possible that biosorption 

phenomena have a more significant role in metal/radionuclide speciation, bioavailability 

and mobility in the biosphere than has previously been supposed (Krantz-Rulcker et al., 

1993, 1996; Ledin et al., 1996; McLean et al., 2002) and it should be emphasized that 

this may also accompany or precede nucleation, precipitation and biomineral formation 

(Burford et al., 2003a; Gadd, 2007, 2009a,b). 

 

Where microbial reduction of a metal or metal radionuclide to a lower redox state 

occurs, mobility and toxicity may be reduced for several elements (Lovley 2001; Lloyd 

& Lovley, 2001; Finneran et al. 2002; Lloyd et al., 2003; Holden & Adams, 2003; Wall 

& Krumholz, 2006; Simonoff et al., 2007), e.g. U(VI) to U(IV) and Cr(VI) to Cr(III) 

(Phillips et al. 1995; Smith & Gadd 2000). U(VI) reduction to U(IV) can be the basis of 

U removal from contaminated waters and leachates as well as the formation of uranium 

ores such as uraninite (UO2) (Lovley and Coates 1997; Lovley 2001; Finneran et al. 

2002; Lloyd, 2003; Lloyd & Renshaw, 2005; Landa, 2005). Anaerobically, hexavalent 

uranium(VI) can be reduced to tetravalent uranium(IV) by a number of bacteria using 

either H2 or one of a variety of organic electron donors(Lovley and Coates 1997; Landa, 

2005; Wall & Krumholz, 2006).Aerobic or anaerobic microbial reduction of Cr(VI) to 

Cr(III) is widespread (Smith & Gadd 2000; McLean & Beveridge 2001). Sulfur and 

sulfate-reducing bacteria are particularly important in reductive precipitation of, e.g. 

U(VI), Cr(VI), Tc(VII), and Pd(II) (Aubert et al. 1998; Lloyd et al. 1999a,b; Lloyd & 

Macaskie 1998; Lloyd, 2003; Lloyd & Renshaw, 2005). Some sulfate-reducing bacteria 

like Desulfotomaculum reducens share physiological properties of both sulfate- and 

metal-reducing groups of bacteria, and can use Cr(VI), Mn(IV), Fe(III) and U(IV) as 

sole electron acceptors (Tebo and Obraztsova 1998). Such direct processes may 

accompany indirect mechanisms of reductive metal precipitation, e.g. in sulfate-

reducing bacterial systems where reduction of Cr(VI) can be a result of indirect 

reduction by Fe
2+

 and the produced sulfide. Elemental silver (Ag
0
) and gold (Au

0
) 

species result during microbial reduction of ionic silver and gold species (Kierans et al., 

1991; Holden & Adams, 2003; Southam et al., 2009). Other redox transformations of 

metals such as Mo, V, Sb are also known which must play a role in their speciation 

although rather less is known about such rarer elements. Microbes can also mediate 

formation of several inorganic and organic biominerals, e.g. oxalates, phosphates, 

sulfides, oxides and carbonates, which lead to metal immobilization (Gadd, 2007, 2010, 

2011). 
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Weathering of iron-containing minerals in rocks, soils, and sediments is promoted partly 

by bacterial and fungal action and partly by chemical activity (Lovley, 2000). Mobilized 

ferrous (Fe(II)) may be biologically or abiotically oxidized to ferric iron at pH >5 under 

anaerobic or partial or fully aerobic conditions. Some bacteria can oxidize ferrous iron 

enzymatically with the generation of energy, e.g. acidophiles like Acidithiobacillus 

ferrooxidans, Leptospirillum ferrooxidans, Sulfolobus spp., Acidianus brierleyi, and 

Sulfobacillus thermosulfidooxidans. Fe(II) is least susceptible to autoxidation below pH 

5. Some bacteria growing at circumneutral pH can also oxidize ferrous iron 

enzymatically under partially reduced conditions, e.g. the stalked bacterium Gallionella 

ferruginea and sheathed bacteria like Leptothrix spp. (Ehrlich & Newman, 2009). 

Ferrous iron can also be oxidized non-enzymatically by microbes when their metabolic 

activities alter the microenvironment to favor autoxidation. Some Fe(III) precipitation 

may also arise from the destruction of ferric iron chelates. Ferric iron may also be 

locally concentrated by adsorption to microbial surfaces and metal oxides. Microbial 

formation of hydrous iron oxides in aqueous environments may cause accumulation of 

other metal ions by coprecipitation or adsorption: such adsorbed metals may be 

remobilized by reduction of the iron oxides or acidification (Ehrlich & Newman, 2009). 

 

6. Organic Matter Decomposition and Metal Cycling 

 

Organic matter decomposition is one of the most important microbial activities in the 

biosphere and the ability of microbes, mainly bacteria and fungi, to utilize a wide 

spectrum of organic compounds is well-known. These range from simple compounds 

such as sugars, organic acids, and amino acids to more complex molecules which may 

be broken down by extracellular enzymes before cellular uptake and metabolism. These 

latter compounds include cellulose, pectin, lignin, lignocellulose, chitin and starch, and 

also hydrocarbons, pesticides, and other xenobiotics that may be anthropogenically 

produced. Degradation of such substances results in redistribution of component 

elements between organisms and environmental compartments. The vast majority of 

elements in plant, animal and microbial biomass (>95%) comprise carbon, hydrogen, 

oxygen, nitrogen, phosphorus and sulfur, and, as well as these, several other elements 

are typically found in living organisms most with essential biochemical and structural 

functions, e.g. K, Ca, Mg, B, Cl, Fe, Mn, Zn, Cu, Mo, Ni, Co, Se, Na, and Si. However, 

all 90 or so naturally-occurring elements may be found in plants, animals and microbes, 

including Au, As, Hg, Pb, Cd and U. Some of these elements will be taken up as 

contaminants in food and from the environment. Therefore, it should be stressed that all 

decomposition, degradative and pathogenic microbial activities are linked to cycling of 

these constituent elements, most of which are metals and some of which may be 

radionuclides accumulated from anthropogenic sources. This simple perspective on 

organic matter decomposition illustrates the global involvement of microbes in 

elemental cycles. 

 

Biodegradation of organometallic (and organometalloid) compounds, still widely used 

in agriculture and industry, can result from direct enzymatic action, or by microbial 

facilitation of abiotic degradation, e.g. by alteration of pH and excretion of metabolites 

(Gadd, 1993b, 2000b). Organotins, such as tributyltin oxide and tributyltin naphthenate, 

may be degraded to mono- and dibutyltins, inorganic Sn(II) being the ultimate product 

(Gadd, 2000b). Organomercury compounds may be detoxified by organomercury lyase, 
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the resultant Hg
2+

 being subsequently reduced to less toxic, diffusible and volatile Hg
0
 

by mercuric reductase (Gadd, 1993b).  

 

- 

- 

- 
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